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Abstract--It has recently been observed that in laminar shear flows settled particles within a suspension 
can be resuspended. This phenomena, known as "viscous resuspension", if properly exploited can have 
a beneficial effect on the process of proppant placement within a hydraulic fracture. By taking advantage 
of viscous resuspension effects it is possible to entrain particles from a settled bed back into the bulk shear 
flow which will enable them to be convected deep into the fracture channel and thus avoid the possibility 
of fracture closure. In practice the sedimentation/resuspension processes usually consist of rigid spherical 
negatively buoyant particles, which are of approximately equal size and density and do not aggregate, 
settling at very small particle Reynolds numbers from a suspension comprised of an incompressible 
Newtonian fluid. In this paper the particle concentration equation is solved initially for a fully developed 
steady one-dimensional gravity-driven flow down an inclined channel. The problem is then developed by 
adding a pressure-driven flow across the inclined channel. The concentration, momentum and conserva- 
tion of mass equations have been solved numerically under a wide variety of operating conditions and 
initial feed particle concentrations, and typical concentration and velocity profiles at various angles of 
inclination of the channel and strengths of cross flow are presented. 
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1. I N T R O D U C T I O N  

The phenomena of resuspension is the process by which, in the presence of a shear flow, an initially 
settled layer of negatively buoyant particles is dragged into the bulk fluid and is convected away. 
This type of process is usually associated with large Reynolds number flows and turbulence, as 
discussed in Thomas (1961). However, Gadala-Maria (1979) appear to have been the first to 
observe that such resuspensions could also occur at small values of Reynolds numbers, say O (10-4), 
for which inertial effects are insignificant and the flow is laminar. During the course of his study, 
Gadala-Maria (1979) measured the rheological properties of suspensions of coal particles in viscous 
Newtonian fluids using a parallel plate device. It was found that when the coal suspension was 
sheared at low shear rates, after having been left overnight, the initial value of the viscosity was 
significantly lower than that which had been measured the day before. This suggested that the coal 
particles in the suspension, being heavier than the liquid, had settled overnight. However, when 
the rate of shear was increased the viscosity was observed to increase and eventually to reach the 
same value as that measured the day before for a uniform suspension, thereby implying that the 
settled layer of particles had resuspended. 

In a more complete investigation, Leighton & Acrivos (1986) designated this phenomena as 
"viscous resuspension" and showed that it could be explained in terms of a shear-induced diffusion 
process, see Leighton & Acrivos (1987), in which the diffusivity resulted from interparticle 
interactions within a suspension as it is sheared. This diffusion mechanism was found to be quite 
different from conventional Brownian diffusion, arising from molecular motion, which is negligible 
for large particles such as those used in the experiments performed by Gadala-Maria (1979) and 
Leighton & Acrivos (1986, 1987). Since the rate at which these interparticle interactions occur is 
proportional to the shear rate, ¢, and the resulting displacement across streamlines scales with the 
particle radius, a, then the effective diffusivity from interactions is proportional to Ca:. 

The phenomena of viscous resuspension is of practical importance in many industrial operations. 
One of the most common processes in industry involves the separation between a particulate phase 
and the continuous fluid which constitute a particular slurry. Often this is achieved using gravity 
settling, which is a relatively slow process when particles are small and the fluid is viscous. Thus, 
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the effect of viscous resuspension could significantly reduce the performance of these settling 
devices. However, if properly exploited, viscous resuspension can have a positive influence on some 
industrial operations, such as the process by which proppant particles are placed within a hydraulic 
fracture in the hydrocarbon industry. When a fracture is created, a fluid containing proppant 
particles is pumped into it. Ideally, the proppant particles should settle evenly along the entire 
length of the fracture so that when pumping ceases the fracture is wedged open by the sedimented 
particles. By taking advantage of viscous resuspension effects it is possible to entrain particles from 
a settled bed back into the bulk shear flow which will enable them to be convected deep into the 
fracture channel and thus avoid the possibility of closure. 

Dynamical simulations of many-particle systems that account for interparticle effects are 
computationally expensive and difficult to apply for complex flow geometries which are frequently 
found in industry. Hence, a continuum model which is based on the fundamental physics of a 
suspension, but simple enough to be used in flow simulations, would be very valuable. Leighton 
& Acrivos (1986) devised a simple mathematical model of the resuspension processes observed in 
a basic Couette type device by considering a balance between the downward flux of particles due 
to sedimentation and an upward flux due to shear-induced effective diffusion along concentration 
gradients. A similar model was employed by Schaflinger et al. (1990) who investigated theoretically 
viscous resuspension for two shear flows, specifically a pressure-driven flow in a horizontal channel 
and a gravity-driven film flow along an inclined plate. More recently, Zhang & Acrivos (1994) 
developed the model used by Schaflinger et al. (1990) to theoretically analyse a more complicated 
three-dimensional resuspension flow within a horizontal pipe. 

The purpose of this paper is to examine theoretically viscous resuspension, using a similar model 
to that employed by Leighton & Acrivos (1986) and Schaflinger et al. (1990), initially for a fully 
developed steady one-dimensional gravity-driven flow down an inclined channel and then to extend 
the problem by adding a perpendicular pressure-driven flow across the inclined plane. This latter 
situation is a reasonable model for proppant flows in inclined fractures provided that the angle of 
inclination, ~, is assumed to be sufficient for entrainment to occur without particles being contained 
in a stagnant packed bed along the lower surface of the fracture. 

2. GRAVITY-DRIVEN FLOW DOWN AN I N C L I N E D  CHANNE WITH 
CROSS FLOW 

Consider the flow of a suspension, consisting of uniform spherical particles, down an inclined 
channel of height 2B which is at an angle ~ to the horizontal when there is a constant pressure 
gradient applied across the channel, i.e. in the x*-direction (see figure 1). The volume of flux of 
clear fluid per unit depth flowing in the x* and y*-directions are 2Q and Q, respectively, where 
Q is an adjustable parameter. In this paper we take the region of interest sufficiently far from the 
inlet regions and down the incline that all the components of the velocity are functions of z* alone 
and therefore the z*-component of velocity is zero. The velocity components are U* and V* in 
the x and y*-directions, respectively. 

As the suspension flows some particles within it will begin to sediment, due to the effect of 
gravity, while others will resuspend because of the diffusion caused by the shear flow. If steady state 
is achieved, i.e. the sedimentation flux balances the shear-induced diffusive flux of particles, the flow 
basically consists of two distinct regions, namely a region of clear fluid above a region of suspension 
which has a variable concentration (see figure 2). We consider the suspension to consist of 
rigid spherical negatively buoyant particles, which are of uniform size and density and which do 
not aggregate, settling at very small Reynolds numbers from a suspension comprised of an 
incompressible Newtonian fluid. The particle flux due to sedimentation in the z *-direction is given 
by 

N~=-dpf(c~)[~ a2g (P2-Pl/~I )1 cos~ [1] 

for a rectangular channel inclined at an angle a to the horizontal (see figure 1) where q~ is the local 
particle concentration, g is the acceleration due to gravity, a is the particle radius, # is the viscosity, 
p is the density, [~a2g(p2- Pl)/PJ ] is the dimensional Stokes settling velocity, the subscripts 1 and 
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Figure 1. The schematic d iagram and coordinate  system. 

2 refer to the clear fluid and the particle properties, respectively, and f (¢ )  is called the hindered 
settling function. In this work the hindered settling function was chosen to be the same as that used 
by Leighton & Acrivos (1986), Schaflinger et  al. (1990) and Zhang & Acrivos (1994), namely, 

1 - ~  
f ( ¢ )  = - -  [ 2 ]  

where/~, is the relative viscosity between the suspension and the clear fluid and is given by Leighton 
& Acrivos (1987) as 

/2m 1 [3] 

/~' Yl l -  

where ¢0 is the volume fraction of particles in the state of close packing and typically takes the 
value 0.58, see Leighton & Acrivos (1986), and the subscript m denotes the suspension properties. 
According to Leighton & Acrivos (1987), the particle flux due to shear-induced diffusion can be 
expressed as 

N~ = - D¢ V *  dp - D~ V * f  * [4] 

where the scalars D c and Ds are dimensional forms of the shear-induced diffusion coefficients and 
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Figure 2. The cross section o f  the channel in the y - z  plane. 
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7" is the effective shear rate and * denotes dimensional quantities. The dimensionless forms of the 
coefficients Dc and D~ which are used in this work were given by Phillips et al. (1992) as 

Dc 1 d#~ D~ 
b~==-a~-g= K~4) + K~4)z #, dc~ ' D~=- ~7 = K~492 [5] 

where K~ and K, are constants of proportionality which have to be determined exprimentally. In 
all our calculations, we have taken the values of K~ and K, to be 0.43 and 0.65, respectively, i.e. 
the values as suggested by Phillips et al. (1992). Since the region of interest in this paper is 
sufficiently far from the entrance of the fracture then all quantities are assumed to be dependent 
on z*. Hence, from [4] and [5] we have 

N'=-K~a2(  qb2d~* ~-~z*) (~2) d#' d~b ~z* + 49~* - K~ckZ~* d~ dz*" [6] 

Applying the steady momentum equation in the y*-direction, i.e. down the inclined plane, within 
the resuspended region yields 

d [ dV*'~ 
~/./m d ~ -  ) = - - ( 1  - -  4))Pig sin c~ -- qSp2g sin ~ [7] 

dz* 

which on non-dimensionalization becomes 

dry  
dz - (1 +eq~) [8] 

where 

P2 - -  P l  E - [9] 
Pl 

is the relative density difference between the solid particles and the clear fluid and all lengths, 
velocity, shear stresses and pressure scales have been non-dimensionalized with respect to 2B, 
4B2p~p~g sin ~, 2Bp~g sin c~ and 2Bplg sin ct, respectively. The non-dimensional shear rate and 
shear stress in the y*-direction, namely ~y and z y, respectively, are defined by 

. y  = d vm = r ~  [101 
dz #r 

where p, is the relative viscosity between the suspension and the clear fluid, as defined by [3]. 
Similarly, by applying the steady momentum equation in the resuspended region parallel to the 
x*-direction we obtain 

d { dUm*'~ dp* 
dz-* k/Am d~-~- )  = d x ,  

[11] 

which on non-dimensionalization becomes 

dr~ 
- -  = - K  [ 1 2 1  
dz 

where K is the dimensionless pressure gradient in the x*-direction and the non-dimensional shear 
rate and shear stress in the x*-direction, namely "x 7m and r~, respectively, are defined by 

• ~ _  aura  r x [131 - - - -  ~ - - ,  
dz p, 

Because both the velocity and concentration profiles are fully developed, mass is conserved in both 
the x* and y*-directions. Therefore, the dimensionless equation for the conservation of mass for 
the clear fluid in the x*-direction can be written as 

;0" fh I ( ~ 0 )  2 EX 2 [14] (l-ck(z))Um(z)dz+ Ul(z)dz=2 = 9 sin----~ 
t 



VISCOUS RESUSPENSlON OF PARTICLES IN AN INCLINED RECTANGULAR FRACTURE 407 

where Q0 = 8B3pi ~t ? ig sin ~ and ,c is the modified Shields number which gives a measure of the 
ratio between the viscous and buoyancy forces and is given by 

9 /~tQ 
x = 16 B3g(p2 - Pl)" [15] 

Alternatively, (14) can be written in the form 

01 2 ex 
( 1  - ¢(z))g(z)  dz = ~ sin ~ 2 [16] 

since ¢ = 0 for z >t ht, and ht is the height above the bottom surface of the channel at which the 
suspension-clear fluid interface occurs. Similarly, conservation of mass in the y*-direction gives rise 
to 

fS 2 er [17] (1-- ¢(z))V(z)dz 9 sin 

Also, the ratio betwen the flux of solid material flowing down the inclined channel, in the 
y*-direction, compared to the corresponding flux of clear fluid flowing in this direction can be 
written as 

;o' .8, ¢(z)V(z) dz - 9 sin 

where Cs is the initial feed concentration before the cross flow component of the flow is added, 
and U and V are the continuous velocity profiles across the whole channel in the x* and 
y*-directions, respectively. Now, because a steady state is assumed to exist, the particle fluxes due 
to sedimentation and shear-induced diffusion must balance, i.e. 

N, + Ns = O. [191 

By making use of [1], [2], [6] and [19] we obtain 

2a2g¢ l - -  f9 (P2-  P,) + Kca2(¢ 2 d~* . . ,  dq~ "~ K "*' 2[a2"~ d~Ir d ~ 
--9 D'/r - -  COS O ~ , / / l  Ik, ~ - t -  +~' m -d--~--~z ~)  -I-- it ~' m I~l t ~ r r ) ~  ~"  dz lit -~-0 [20] 

where 

ira* = rm* = ! [(~m*X)2 + (~m*~y]': 
~m ,Um 

Q0 1 x2 y2 1/2 
[Tin "l- Trn ] • [21]  

- (2B)2 pr 

It should be noted that in the earlier papers, see Leighton & Acrivos (1986) and Schaflinger 
et al. (1990), which deal with shear-induced diffusion, they were limited to unidirectional 
flows where the diffusion coefficient is proportional to the local shear rate or shear stress. 
Although the generalization of this result to two and three-dimensional flows is not obvious 
and needs to be investigated by further experimental studies, it is assumed for simplicity in 
this paper that the shear-induced diffusion coefficient is proportional to the absolute local shear 
rate. 

By non-dimensionalizing [20], using [21] and then re-arranging we obtain 

2 d 
d_¢¢ = ~e(1 -¢ )co tc¢  + K c ¢ ~ z  z [{z~2+r~} In] 

de {r~ + z~} i l2 i (K~ Kc)dl2, dp + [22] 

which is the particle diffusion equation. 
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3. S O L U T I O N  P R O C E D U R E  

In order to be able to calculate the velocity and concentration profiles across the entire 
channel, the system of equations [8], [10], [12], [13], [16]-[18] and [22] is written in the following 
differential form, i,e. 

dz ~ 
dz K [23] 

d T  y 
- (1 + c ~ b )  [ 2 4 ]  

dz 

dU z X 
- [251  

dz /~, 

dV z' 
- [ 2 6 ]  

dz Pr 

dPi 
d ~  = (1 - ~b)U [27] 

dP~ 
" = (1 - ~ b ) V  [ 2 8 ]  

dz 

dR 
dz ~b V [291 

for 0 < z < 1, where 

and 

d4, 
dz 

~E(1 -- qS)cot ~ + Kc~ d [{z~ 2 + z~},/2 ] 

{r~2 + r.~2 } , ;2[(K.~ Kc) d/~ dq5 ~b + Kc ] 
[301 

~b=0  for z/>ht  [31] 

f: f0 ; P , =  ( 1 - q 6 ) U d z ,  P2= =(1-qS)Vdz ,  and R =  OVdz. [32] 
0 

The above system of equations has to be solved subject to the following boundary conditions: 

U = V = P I = P 2 = R = O  at z = 0  [33] 

U = V = ~ b = 0 ,  P t=-2  E• 2, p 2 = 2  EK and R = 2  E~: ( ~b~ "] at z = l  [341 
9 sin ~ 9 sin ~ 9 sin ~ \1 - q~s] 

and were solved by employing a Runge-Kutta  Merson method. It should be noted that this 
problem is well posed since we have eight first-order ordinary differential equations, eleven 
boundary conditions and three unknown parameters, namely the height above the bottom of the 
channel at which the suspension-clear fluid interface occurs, ht, the parameter determining the 
strength of the cross flow, 2, and the dimensionless pressure gradient in the x*-direction, K. The 
numerical method used determines the unknown parameters as well as the solution of the system 
of equations [23]-[30] given the angle of inclination, ~, the Shields number, x, the initial particle 
volume fraction, ~bs and the relative density difference between the solid particles and the clear 
fluid, t. However, in the limiting situation when 2 = 0, the system of equations reduces to five 
first-order ordinary differential equations, seven known boundary conditions and two unknown 
parameters, ht and x or ~. In this case we have specified ~ as known. 
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4. R E S U L T S  A N D  D I S C U S S I O N  

We will consider the problem for the following two cases: 

(i) No cross flow, i.e. when the flow is simply driven by gravity down the inclined plane in 
the y*-direction, i.e. 2 = 0. 

(ii) Cross flow, i.e. when a pressure-driven flow in the x*-direction is added to the flow 
described in case (i), i.e. 2 > 0. 

Case (i): 2 - 0  

Figure 3(a) and (b) illustrates some typical particle concentration and velocity profiles, 
respectively, for various values of  the Shields number, x, when 2 = 0, ~b~ = 0.3 and E = 1. It should 
be noted that one can take the angle of  inclination, 0t, or the Shields number, x, to be the unknown 
parameter  to be determined, in addition to h~. From figure 3(a) it can be seen that when the angle 
of  inclination is 10 °, then x = 4 × 10 -6 and the channel becomes almost entirely packed by 
sediment. As ~, and hence x, which is a measure of  the flow rate of  clear fluid, increased 
resuspension occurs and the particles within the resulting suspension layer become less closely 
packed. Hence the effective viscosity of  the suspension layer decreases making it flow more easily. 
Whilst figure 3(a) displays a decrease in the thickness of  the suspension layer with increasing x, 
figure 3(b) shows that the corresponding velocity in the suspension layer increases. When the angle 
of  inclination reaches 28 °, then ~c = 3.1 × 10 2 and the sediment layer has almost been totally 
resuspended, i.e. we observe a constant particle concentration profile with a sudden cut off to zero, 
as shown in figure 3(a). From figure 3(b) it is observed that as ~ increases, the magnitude of  the 
maximum velocity, which occurs in the neighbourhood of the suspension-clear fluid interface, 
decreases. In the case when total resuspension has virtually occurred, i.e. when ~ = 28 °, a totally 
parabolic velocity profile is detected across the channel with the maximum value occurring at the 
suspension-clear fluid interface. 

As E increases then the sedimentation due to gravity becomes more dominant  and therefore a 
larger value of  ~c is required for total resuspension to occur. Alternatively, as E decreases then 
gravity becomes less dominant  and the situation approaching total resuspension will result at a 
smaller value of K. We illustrate this in figure 4 by varying E when the channel is inclined at an 
angle 18 ° to the horizontal. It is clearly observed that as the value of E increases we obtain a more 
concentrated and thicker suspension layer and this indicates that gravity is becoming more 
important.  However, as the value of E decreases then the converse is true, i.e. resuspension becomes 
more dominant.  It should be noted that for very weak flows a convergent solution is difficult to 
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z, when 2 = 0, E = 1 and ~b~ = 0.3 for various angles of inclineation, ct. 

obtain since the situation would be approached where a stagnant sediment forms along the lower 
surface of the channel. 

Additionally, it should be pointed out that in the absence of any concentration the present case 
(2 = 0) is equivalent to that studied by Schaflinger et al. (1990) ( 2 -~=  0), with the appropriate 
external pressure gradient applied. However, any non-zero concentration means that, even for the 
limiting situation of  full resuspension, in this case (2 = 0) different gravitational forces exist in the 
clear and the uniform concentration regions. Hence, we can no longer relate the present case to 
that studied by Shaflinger et al. (1990) (2 ~= 0) where the applied external pressure gradient is 
constant across the entire channel. 

Case (i i):  2 > 0 

In  o r d e r  to  i l l u s t r a t e  t he  s o l u t i o n  p r o c e d u r e ,  t h e  g o v e r n i n g  e q u a t i o n s  [23]-[30] we re  s o l v e d  fo r  

v a r i o u s  v a l u e s  o f  x, s u b j e c t  to  t h e  b o u n d a r y  c o n d i t i o n s  [33]-[34],  in i t ia l ly ,  w h e n  t he  c h a n n e l  was  

i n c l i n e d  a t  a n  a n g l e  o f  18 ° to  t he  h o r i z o n t a l  a n d  t he  r e l a t i ve  d e n s i t y  d i f f e rence  b e t w e e n  t he  so l id  
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and fluid fractions, E, was set to unity. The ratio of the flux of  solid material to that of  clear fluid 
in the y*-direction was fixed, for example ~bs/(1 -~b s )=  3 when ~bs = 0.3. Across the channel a 
Poiseuille type flow, subject to varying viscosity with concentration, was set up and the parameter 
x, was varied. As x increases it was found that the value of  2 required to maintain the fully 
developed profiles also increases, i.e. the strength of  the cross flow increases. Also, the concen- 
tration within the suspension layer decreases and the concentration profiles obtained becomes 
flatter (see figure 5). This indicates that the limit of total resuspension is being approached. 
However, it should be noted that as x increases further, in excess of  x = 2.6 x 10 -2 at ~t = 18 °, then 
the value of  2 slightly exceeds 1.0 (i.e. the rate of  flow of  clear fluid in the x*-direction corresponds 
closely with that in the y*-direction), and the particle concentration in the outer region of the 
resuspension zone begins to increase. This observation can be explained by noting that as more 
clear fluid flows then the magnitude of  the shear rate within the suspension increases, but in this 
case the shear rate has increased sufficiently to enable a positive gradient in concentration to exist. 

At this point it is necessary to discuss in some detail the differences,in the concentration profiles 
in case (ii) as the strength of  the cross flow increases compared with case (i), when the flow is simply 
down the channel, as the angle of inclination increases towards its maximum value. In case (i) the 
limiting situation in which total resuspension is assumed to occur is taken to be the angle of 
inclination of  the channel to the horizontal, ~, above which a convergent numerical solution 
becomes very difficult to obtain. As the angle of inclination of the channel increases, the magnitude 
of the shear stress in the region just above the lower wall of  the channel increases and this results 
in an increase in the amount  of resuspension that is possible. The limiting situation is identified 
by the existence of a region of  constant concentration which extends from the lower wall of  the 
channel to the interface between the suspension and the clear fluid where the value of the 
concentration changes to zero in an almost discontinuous manner [see figure 3(a)]. Until shortly 
before the limiting value of  the angle of inclination is reached the value of  zero shear stress occurs 
within the clear fluid and the solution of the concentration equation is restricted to a domain which 
is free of  a zero shear stress which would cause a singularity in [30]. However, once the point where 
the shear stress is zero reaches the edge of  the non zero concentration region, it is necessary 
for the numerical scheme for the concentration equation, i.e. [30], to accommodate this singularity. 
Obviously the changing position of  the singularity and its non-analytical representation makes 
any attempt at its removal virtually impossible. From [30] it should be emphasized that the 
point of  zero shear stress has to be accompanied by an infinite gradient in the concentration. 
Hence, numerical difficulties arise when the concentration profiles at large angles of  inclination are 
sought. 
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Figure  6. The  particle concent ra t ion ,  ~b, as a funct ion  o f  the non-d imens iona l  variable,  z, when  ~ = 18 °, 
E = 1 and  ~b s = 0.15 for var ious  values of  ~¢. 

- -  x2 v2 1/2 For case (ii), as in case (i), the shear stress, z m - (rm + r'm ) , increases in the region just above 
the lower surface of  the channel as the angle of  inclination, ~, and the strengths of flows, namely 
2Q and Q in the x* and y*-directions, respectively, increase, resulting in an increase in the amount 
of resuspension. However, in this situation, since the shear stress is never zero, more and more 
material will be resuspended without any breakdown in the numerical method. Hence, for 
sufficiently large flow rates of clear fluid in the y*-direction we are able to observe positive gradients 
in concentration. It should be noted that even for flows where 2 is unity, i.e. where the flow rates 
of clear fluid are equivalent in the x* and y*-directions, the corresponding velocity profiles are not 
identical since hydrodynamic diffusion is a highly non-linear process. Hence, for such flows the 
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absolute  shear within the suspension, Tm, is non-zero  and thus the si tuat ion where total  
resuspension occurs is avoided. 

In addi t ion to the above  calculat ions with ~b s = 0 . 3  and ~ = 18 °, fur ther  calculat ions were 
pe r fo rmed  with the value of  q~s set to be 0.15. Figure 6 shows the concent ra t ion  profiles, obta ined 
by solving the system of  equat ions  [23]-[30] subject to the bounda ry  condit ions [33]-[34], for  
different values o f  the pa rame te r  x and it is again observed that  a concentra t ion  peak forms close 
to the suspens ion-c lear  fluid interface region when the values o f  x, and  hence 2, are found to be 
sufficiently large. However ,  in this case a value o f  x = 6.6 x 10 -2 (2 ~ 3) was required for a 
concent ra t ion  peak  to be observed,  whereas  in the case when ~b, = 0.3 (see figure 5) this si tuation 
occurred when x = 2.6 x 10 -2 (2 ,~ 1). The  reason for  this is that  for a par t icular  value of  x there 
are fewer particle collisions when tks = 0.15 than  for  the corresponding case when ~b, = 0.3 since 
the average  particle concent ra t ion  in the fo rmer  si tuation is less. Hence,  the flux o f  particles 
oppos ing  gravity will be lower when ~b s = 0.15 and in order  to obta in  a greater  migra t ion  of  particles 
a larger shear rate is required within the suspension and this can only be achieved with a larger 
value o f  x. Also, it is observed f rom figure 6 that  the concentra t ion  peak always occurs close to 
the suspens ion-c lear  fluid interface region. This is because the magni tude  o f  the shear stress is 
a lways larger at  the b o t t o m  o f  the channel  and tends to decrease with height into the region in 
the ne ighbourhood  close to the suspension--clear fluid interface. To  illustrate this more  clearly figure 
7 shows the var ia t ion o f  the magni tude  o f  the shear stress close to the suspension-clear  fluid 
interface. Thus,  more  particles migra te  f rom the b o t t o m  of  the channel,  i.e. f rom the regions of  
largest shear,  and hence this results in a build up of  particles close to the suspension-c lear  fluid 
interface. In fact, when x = 7.78 x 10 -2 (2 = 5.6) we a lmost  have a region o f  m a x i m u m  particle 
concent ra t ion  just  below the interface (see figure 6). As x increases further,  the numerical  scheme 
employed  has great  difficulty in obta ining convergent  solutions. This occurs because o f  p rob lems  
experienced on integrat ing across the concent ra t ion  peak where a very large increase in the relative 
viscosity between the suspension and the clear fluid is present.  

By increasing ct and x, the particle concent ra t ion  peak is observed to occur  at a lower values 
o f  2, for  example  when ~t = 18 °, E = 1 and ~ = 0.3 then with x = 2.4 x 10 -2 (,~. -- 1.0) no peak has 
yet occurred (see figure 5), but  when ~t = 28 ° a considerable concentra t ion  peak  is present  at this 
value of  2 (see figure 8). However ,  it should be stressed that  this now corresponds  to x = 4.5 × 10 -2. 
Physically this means  that  as ~ increases, then with the volumes of  clear fluid flowing in the x*  
and y*-di rec t ions  approx imate ly  the same a higher value o f  x is required. When  the value of  ct is 
increased even fur ther  then concent ra t ion  peaks  begin to be observed at progressively smaller  
values of  2 (see figure 9 which shows concent ra t ion  profiles for var ious values of  r when ~t = 36°). 
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F i g u r e  9. T h e  p a r t i c l e  c o n c e n t r a t i o n ,  4,, a s  a f u n c t i o n  o f  t he  n o n - d i m e n s i o n a l  v a r i a b l e ,  z, w h e n  ct = 36 °, 
E = 1 a n d  4, s = 0 .3  f o r  v a r i o u s  v a l u e s  o f  x. 

This is explained simply by the fact that as ct increases, a fully developed flow pattern requires 
higher values of x, namely, more clear fluid flowing down the channel, resulting in an increase in 
the shear stress at the walls hence giving rise to a greater resuspension flux of particles. It should 
again be noted that the numerical technique employed runs into difficulties as the particle 
concentration reaches its maximum value of  0.58, i.e. the effective viscosity of the suspension tends 
to infinity when this situation is approached. Thus, for values of ~ larger than 36 ° it is very difficult 
to obtain solutions. 

It should be noted that close to the suspension-clear fluid interface 4, ~ 1. For this limiting 
situation the particle diffusion equation [30] can be simplified but, unlike the case considered by 
Shaflinger et al. (1990), it remains analytically intractible. 

5. SU MMA RY  

In this paper we investigated theoretically the viscous resuspension of identical, negatively 
buoyant, spherical particles, initially for a fully developed steady one-dimensional gravity-driven 
flow down a rectangular channel and later with a pressure-driven flow added in a direction 
perpendicular to the original flow. The theoretical approach was based on a model developed by 
Leighton & Acrivos (1986) in which the net downward flux of  particles due to gravity is balanced 
by a diffusive flux caused by a shear-induced random motion of particles. 

For  the case with no cross flow, it is shown that as the angle of inclination increases a constant 
concentration profile is reached within the resuspension layer and the velocity has its maximum 
value at the particle-clear fluid interface. Thus, the resuspension is restricted due to the existence 
of a plane on which the shear stress vanishes and hence solutions at larger angles of inclination 
are unobtainable. 

When 2 # 0, that is a cross flow is present, then by increasing the flow rate sufficiently in the 
y*-direction at a fixed angle of  inclination, produces a value for the concentration within a thin 
layer close to the centre of  the channel that approaches the limit maximum packing, namely, 
4, = 0.58. When the channel is inclined at larger angles to the horizontal, the ratio of the volume 
of  clear fluid flowing in the x*-direction to that in the y*-direction at which this maximum packing 
condition is reached is found to decrease. 

When the initial feed concentration, ~s increases the number of particle-particle interactions 
increases and the value of x, a measure of flow rate in the y*-direction, at which the maximum 
packing condition is reached decreases. 

Finally, it is important to point out that our whole analysis has been based upon the 
generalization of the experimental result stating that the shear-induced diffusion coefficient is 
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proportional to the absolute shear rate. Since this result has only been verified for simple 
uni-direction flows it requires further experimental investigation. 
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